(where $\omega_0=\frac{2\pi}{T_0}=2\pi f_0$ - ie. angular frequency, with unit rad/s)
(Hermitian symmetry)
\begin{equation} a_n=(F_n+F_{-n}) \quad b_n=i\cdot(F_n-F_{-n}) \end{equation}\begin{equation} F_n=0.5\cdot(a_n-i\cdot b_n) \quad F_{-n}=0.5\cdot(a_n+i\cdot b_n) \end{equation}\begin{equation} A_n=\sqrt{a_n^2+b_n^2}=2|F_n| \end{equation}Fourier series is defined only for periodic signals (with the period $T_0$)!
How can we compute the Fourier series for non-periodic signals?
Given that $\omega_0=\frac{2\pi}{T_0}=2\pi f_0$
If $T_0\rightarrow\infty$ then $\omega_0\rightarrow0$
Thus the $F_n$ coeffients will turn from a series of points $\rightarrow$ function of real values $F(\xi)$
Used for digital signals
Analitic function: